UTBB FD-SOI: The Technology for Extreme Power Efficient SOCs

Philippe Flatresse
Technology R&D
Bulk transistor is reaching its limits

Limited body bias capability

Complex channel architecture

Heavily Doped Wells

Fully Depleted devices are mandatory to continue the technology roadmap

FD-SOI = 2D

FinFET = 3D
28nm Planar UTBB FD-SOI Transistor

36 Masks:
7ML
Dual Vt - Dual Oxide

Thin Body (7nm)

Ultra Thin Body & BOX Fully Depleted SOI transistor
28nm Planar UTBB FD-SOI Advantages

- Shorter channel length
 - 24nm technology!

- Better electrostatics
 - Faster operation
 - Low voltage
 - Reduced variability

- Total dielectric isolation
 - Latch up immunity

- Lower leakage current
 - Less sensitive to temperature
28nm FD-SOI is same cost as 28LP, same performances as “G” technologies

FD-SOI, the only technology allowing the continuation of the Moore’s law

Source: ST/Marketing 2013, IBS 2013
FD-SOI: the best solution to 10nm

<table>
<thead>
<tr>
<th>Year</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>28nm FD-SOI</td>
<td>AVAILABLE TODAY!</td>
<td></td>
<td>TODAY IN DEVELOPMENT</td>
<td></td>
<td>TODAY IN R&D</td>
</tr>
<tr>
<td>14nm FD-SOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10nm FD-SOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advantages of FD-SOI:

- **28nm FD-SOI**
 - 0.9V
 - 113CPP
 - 90Mx
 - +30% speed
 - -30% power
 - (at same speed)

- **14nm FD-SOI**
 - 0.8V
 - 90CPP
 - 64Mx
 - +20% speed
 - -25% power
 - (at same speed)

- **10nm FD-SOI**
 - 0.7V
 - 64CPP
 - 48Mx

CPP: Contact to Poly Pitch
Mx: Pitch at Metal layer
FD-SOI Benefits vs. Other Technologies

<table>
<thead>
<tr>
<th></th>
<th>Bulk</th>
<th>FD-SOI</th>
<th>FD-SOI</th>
<th>FinFET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28 LP</td>
<td>28 G mobile</td>
<td>28FD</td>
<td>14FD</td>
</tr>
<tr>
<td>Power Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in high performance mode</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Power Efficiency in low power mode</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Extended DVFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULV capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Process Simplicity</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>SER immunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat dissipation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion:
- 28FD consistently better than any 28nm alternative
- 20nm irrelevant for many segments: better use 28FD or go to 14FD
- 14FD consistently better than 14/FF
UTBB FD-SOI Design EcoSystem

• FD-SOI uses a conventional bulk design flow
 • Cadence, Mentor, Synopsys,
 • Apache, Atrenta

• 4-terminals spice models available, from PSP
 • Major simulators supported

• UTBB FD-SOI uses same low power design techniques than for bulk. In addition:
 • Optimized power switches
 • Extended poly-bias
 • Reverse & forward Dynamic body bias
Body Biasing (BB)

A very reasonable effort for extremely worthwhile benefits

- An extremely powerful and flexible concept in FD-SOI to:
 - Boost performance
 - Optimize passive and dynamic power consumption
 - Cancel out process variations and extract optimal behavior from all parts

- Comparatively easy to implement – if you’ve ever done DVFS you’ll have no difficulty with Body Biasing
 - No area penalty compared to Bulk
 - Reuse of Bulk design techniques
 - Speed/Power control

Back-gate contact
Extended Body Bias Range in UTBB FD-SOI

Efficient knob for speed/leakage optimization

BULK

UTBB FD-SOI

-300mV +300mV

-3V +3V

Efficient knob for speed/leakage optimization
Body Bias Efficiency - Silicon Benchmark

Frequency (MHz)

- **no BB**: REF
- **FBB 1V**: +20%
- **FBB 2V**: +40%
- **FBB 3V**: +60%

Leakage (pA)

- **0.5V**: REF
- **1V**: /7
- **1.3V**: /30
- **RBB**: /50
FBB usage per market segment

<table>
<thead>
<tr>
<th>Market Segment</th>
<th>Infrastructure - Networking</th>
<th>Consumer</th>
<th>Internet of Things</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply</td>
<td>0.7 – 0.9V</td>
<td>0.6 – 1.1V</td>
<td>0.6V-0.9V</td>
</tr>
<tr>
<td>Configuration</td>
<td>high number multicore, DVFS & FBB tuning for best MIPS/W ratio. Adapt perf & power to workload</td>
<td>Wide DVFS, FBB linked to CPU workload & thermal conditions</td>
<td>Ultra Low Voltage 0.3V-0.4V, FBB to solve the power/performane paradigm, Reverse Body Biasing</td>
</tr>
<tr>
<td>Power efficiency</td>
<td>28 FD-SOI: Up to -50% total power reduction versus 28G(mobile) @ 0.6V, FBB for ultimate power efficiency tuning</td>
<td>28 FD-SOI: Up to -50% power reduction, FBB provides +18% max. performance boost versus 28G(mobile)</td>
<td>28 FD-SOI: Up to x 4 perf/power ratio versus 28G(mobile) at low voltage, Low voltage power efficient performance. Reduce idle current</td>
</tr>
<tr>
<td>Flexibility Perf/Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultra power efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FD-SOI enabling Ultra-Wide DVFS

• FD-SOI allows the widest Vdd range for voltage scaling

• Still guaranteeing top notch speeds at very low operating voltage
 • >5x when compared to 28LP technology
 • >35% when compared to 28G technologies

Real measurements of continuous DVFS in the range 0.5V – 1.4V
Performed on a very large number of ICs, showing extremely good reliability of the DVFS in this range
28nm FD-SOI Best in class efficiency

@ high Vdd

@ low Vdd

+43% vs 28LP

+83% vs 28G

FD-SOI 28nm - +600mV FB6

+50% vs 28LP

+25% vs 28G

bulk 28nm G

bulk 28nm LP

Energy efficiency (relative DMIPS/mW)

Speed (relative DMIPS)

@ low Vdd

@ high Vdd (overdrive)
FD-SOI: Efficiency at all levels

CPU, GPU and logic
- FBB dynamic modulation to get the best total power
- Best dynamic power /leakage tradeoff

Memories
- Memory bit cells in FD-SOI have much less leakage compared to Bulk

Analog & High-speed
- FD-SOI analog performance far beyond Bulk one
- Better figure of merit than FinFET for high-speed IPs

- Extended body bias range
- Fully depleted channel
- Lower gate leakage
- Lower channel leakage

Better transistor electrostatics
FD-SOI
The best technology choice

Superior and flexible technology

- FD-SOI transistors are faster, cooler, simpler
- Outstanding power efficiency across all use cases
- Efficiency at all levels: CPU, logic, Memories, Analog
- Manufacturing infrastructure and process reuse
- Improved reliability

Enhanced design options

- Very large operating range for the same design
- Back-biasing as a flexible and powerful optimization
- Ultra-wide range DVFS
- Enhanced efficiency of multi-core processing
- Easier design than FinFET

Gives your SOC competitive advantages

- Costs: chip-level and/or system-level (e.g. cost of cooling)
- Thermal power dissipation (TDP)
- Extended battery life
- Computing Power / Speed / Reactivity
- Reliability
- Time-to-Market